Abstract

Present study examines the possible improvement of thermal discomfort mitigation. Unlike prior researches, which focused primarily on cooling effects of urban blue space, this study, instead of physical presence of blue space considers its hydrological components. The aim of the study is to better understand the role hydrological components like water consistency depth etc. In temperature regulation. The work uses field surveys and modeling to demonstrate how these hydrological factors influence the cooling effect of blue space, providing insights on urban thermal management. To fulfill the purpose, spatial association of hydrological components blue space with its thermal environment and cooling effects was assessed. The control of hydrological components on the surrounding air temperature was examined by conducting case studies. Resultsreveals greater hydro-duration, deeper water, and higher Water Presence Frequency (WPF) produce greater cooling effects. The study demonstrates a favorable correlation between hydrological richness and temperature reduction. The study also analyzes how land use and wetland size affect temperature, emphasizing the significance of hydrological conservation and restoration for successful temperature mitigation. Due to their hydrology, larger wetlands are able to moderate temperature to some extent, whereas smaller, fragmented wetlands being hydrologically poor are not so influential in this regard.With these results, the present study reaches beyond to the general understanding regarding the cooling effects of the urban blue spaces. While the previous studies primarily focused on estimating the cooling effect of urban blue space, the current one shows its synchronization with the hydrological characteristics. Novelty also entrusts here, through the modeling and field survey current study demonstrates deeper and consistent water coverage in the urban blue space for maximum period of a year pronounces the cooling effect. In addition, in this cooling effect, the role of land use which is a strong determinant of many aspects of the urban environment is also highlighted. Since all these findings define specific hydrological feature, the study has several practical implications. Mare restoration of urban blue space is not enough to mitigate the thermal discomfort. In order to optimize the cooling effect, the conservation of the hydrological richness is essential. The hydrological richness of the smaller wetlands and the edge of the larger wetlands is to be improved. The connection of these wetlands with the adjacent mighty may strengthen the hydrology. The vegetation was found to promote the cooling effect whereas shorter building helped in spreading the cooling effect. Such finding drives to incorporate the blue space with the green infrastructure along with restricting the building height atleast at the edge of the blue space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call