Abstract

AbstractThe interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg‐hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) >300 000. Successive cation and anion exchange experiments demonstrated that those Hg‐ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg2+ into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water‐soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.