Abstract

Diverse, complex, and adaptive animal behaviors are achieved by organizing hierarchically structured controllers in motor systems. The levels of control progress from simple spinal reflexes and central pattern generators through to executive cognitive control in the frontal cortex. Various types of hierarchical control structures have been introduced and shown to be effective in past artificial agent models, but few studies have shown how such structures can self-organize. This study describes how such hierarchical control may evolve in a simple recurrent neural network model implemented in a mobile robot. Topological constraints on information flow are found to improve system performance by decreasing interference between different parts of the network. One part becomes responsible for generating lower behavior primitives while another part evolves top-down sequencing of the primitives for achieving global goals. Fast and slow neuronal response dynamics are automatically generated in specific neurons of the lower and the higher levels, respectively. A hierarchical neural network is shown to outperform a comparable single-level network in controlling a mobile robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.