Abstract

Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.

Highlights

  • Introduction published maps and institutional affilFuture food security and population health rely on the development of safe, reliable, and sustainably-produced protein foods to complement more traditional dietary protein sources such as meat, poultry, eggs, and dairy

  • For some complementary protein foods, the health effects are suggested to be specific to the protein component, while in other cases, components such as fibre or antioxidants may contribute

  • Complementary protein whole foods provide a diversity of both macro- and micronutrient components, together with dietary fibre and phytoactives with anti-inflammatory, anti-hypertensive, and antioxidant activity

Read more

Summary

Introduction

Future food security and population health rely on the development of safe, reliable, and sustainably-produced protein foods to complement more traditional dietary protein sources such as meat, poultry, eggs, and dairy. Population growth, in parallel with a strong consumer demand for non-meat alternatives, has seen complementary protein foods become one of the fastest growing markets of the last decade. A broad range of new food products has been launched into the market at pace, together with an diverse range of health claims. While some protein foods, such as legumes, are supported by many years of compositional, safety, and health research, other sources have little or no data available in humans. The scope for the review was intentionally broad to explore evidence generated across a diverse spectrum of potential protein food sources.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call