Abstract

Oysters are ecosystem engineers that create biogenic reef habitat important to estuarine biodiversity, benthic–pelagic coupling, and fishery production. Prevailing explanations for the dramatic decline of eastern oysters (Crassostrea virginica) during the last century overlook ecosystem complexity by ignoring interactions among multiple environmental disturbances. To explain oyster loss, we tested whether (1) mortality of oysters on natural oyster reefs varies with water depth (3 m vs. 6 m), (2) harvesting by oyster dredges reduces the height of oyster reefs, and (3) bottom-water hypoxia/anoxia and reduction in reef height through fishery disturbance interact to enhance mortality of oysters in the Neuse River estuary, North Carolina, USA. The percentage of oysters found dead (mean ± 1 sd) during a survey of natural reefs in May 1993 was significantly greater at 6-m (92 ± 10%) than at 3-m (28 ± 9%) water depth. Less than one season’s worth of oyster dredging reduced the height of restored oyster reefs by ∼30%. During stratification of the water column in summer, oxygen depletion near the seafloor at 6 m caused mass mortality of oysters, other invertebrates, and fishes on short, deep experimental reefs, while oysters and other reef associates elevated into the surface layer by sufficient reef height or by location in shallow water survived. Highly mobile blue crabs (Callinectes sapidus) abandoned burrows located in hypoxic/anoxic bottom waters but remained alive in shallow water. Our results indicate that interaction of reef habitat degradation (height reduction) through fishery disturbance and extended bottom-water hypoxia/anoxia caused the pattern of oyster mortality observed on natural reefs and influences the abundance and distribution of fish and invertebrate species that utilize this temperate reef habitat. Interactions among environmental disturbances imply a need for the integrative approaches of ecosystem management to restore and sustain estuarine habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call