Abstract

Multiple applied studies of slow nonadiabatic processes in nanoscale and condensed matter systems have adopted the "repetition" approximation in which long trajectories for such simulations are obtained by concatenating shorter trajectories, directly available from ab initio calculations, many times. Here, we comprehensively assess this approximation using model Hamiltonians with parameters covering a wide range of regimes. We find that state transition time scales may strongly depend on the length of the repeated data, although the convergence is not monotonic and may be slow. The repetition approach may under- or overestimate the time scales by a factor of ≤7-8, does not directly depend on the dispersion of energy gap and nonadiabatic coupling (NAC) frequencies, but may depend on the magnitude of the NACs. We suggest that the repetition-based nonadiabatic dynamics may be inaccurate in simulations with very small NACs, where intrinsic transition times are on the order of ≥100 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.