Abstract

Presently, it is debated if regional conservation efforts can alone resolve the ecological problems that global climatic changes could bring. Biological invasion is one of such concerns. In the present study, we modeled how change in global climate and regional anthropogenic pressure can impact the distribution of invasive Lantana camara in the Upper Ganga valley of the Western Himalaya (India). The forest in the study area was stratified into 1 km2 grid and two 15 m radius plot were located in each of the forest types in the grid, for recording Lantana presence. In total, 2221 plots were sampled covering 22% of forest. We used predictors representing the climate, forest patch size, fire and natural disaster variables for modeling the species distribution using maximum entropy algorithm. We further simulated 12 future landscape scenarios based on the global trends of these parameters. The present species—environment relationship was projected to these future landscape scenarios. Lantana was presently estimated to spread in 231 km2 of the study area. It invaded larger forest patches in the sub-tropical region, and smaller disturbed forest patches in the warm and cold temperate region. Increased distribution of Lantana was projected across all the future scenarios. The study revealed how global climate changes and regional anthropogenic pressure can have a synergistic effect on the expansion of invasive species in the future. It thus questions the efficiency of conducting only regional efforts in absence of global initiative to reduce the greenhouse gases emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call