Abstract

Bone tissue engineering (BTE) uses engineering principles to repair large bone defects, which requires effective mass transport ability of scaffolds to support cellular activities during bone regeneration. Since the implanted BTE scaffolds keep deforming under physiological loading which influences the fluid flow and mass transport within the scaffold and surrounding tissue, thus, scaffold design needs to consider the mass transport behavior under the physiological loading. This work proposed a novel twist scaffold, and its mass transport efficiency under physiological loading conditions was evaluated by a fluid–structure interaction analysis. The results showed that compared to the non-twist scaffold, the twist scaffold could form a rotating flow under the physiological loading, which enhanced the mass transport and generated more appropriate wall shear stress (WSS) to promote bone regeneration. This highlighted the better mass transport efficiency of the twist scaffold. Therefore, getting twist may be a promising design strategy for future BTE scaffolds, and the fluid–structure interaction approach may be a more reliable method for bone regeneration studies in either in vivo or in vitro systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.