Abstract

Forest ecosystems deliver multiple goods and services and, traditionally, forest owners tend to have a high interest in goods in the form of merchantable wood. As a consequence, forest management often aims to increase timber production and economic returns through intervention into natural processes. However, forests provide further services, including carbon sequestration, water quantity and quality, and preservation of biodiversity. In order to develop and implement strategies for sustainable forest management, it is important to anticipate the long-term effects of different forest management alternatives on the ability of the forest to provide ecosystem goods and services. Management objectives might emphasize economic interests at the expense of other services. Very few attempts have been made to illustrate and evaluate quantitatively the relationship between forest goods and services. By use of virtual but realistic datasets, we quantified, for multiple services, the effects of five forest management alternatives that form an intensity gradient. Our virtual forest management units represented Central European forest ecosystems in the submontane vegetation zone under a humid–temperate climate with acidic soils. In this zone the European beech (Fagus sylvatica L.) is the dominant tree species. In order to assess the effects on ecosystem services, the untouched natural forest reserve served as a reference. Wherever possible, response functions were deduced to couple the various services via stand-level data to demonstrate trade-offs between the services. Management units comprised all development phases in the sense of a normal forest. It was clearly illustrated that maximizing the rates of biomass production and carbon sequestration may conflict with protection of authentic biodiversity. Several silvicultural operations may, however, have positive effects on biodiversity and water protection without high costs. We also illustrated that water quality and maintenance of soil fertility may be affected either positively or negatively by several forest management operations. In contrast, water quantity was only minimally influenced by forest management. For the virtual forest in a humid climate, differences of 70 mm/yr in runoff were negligible. Under dry continental conditions, however, such differences may have important implications for groundwater formation.

Highlights

  • Timber production and economic yield are important forestry objectives that are achieved through direct intervention into natural processes

  • It was clearly illustrated that maximizing the rates of biomass production and carbon sequestration may conflict with protection of authentic biodiversity

  • One of the most important questions for the future is how to manage the forest for timber production while conserving or improving other important ecosystem services

Read more

Summary

Introduction

Timber production and economic yield are important forestry objectives that are achieved through direct intervention into natural processes. Various models of forest management systems have evolved over time. They range from “exploitive” to “back-to-nature”, with all intended to satisfy the diverse human demands on the forest (Seymour and Hunter 1999, Hunter 2001, Gamborg and Larsen 2003). Contemporary sustainable forest management aims to ensure that goods and services derived from forests meet present-day needs while at the same time securing the forests' continued viability and contributions to long-term development. Forest management itself requires prudent management in order to conserve essential ecosystem services such as soil fertility and water quality. One of the most important questions for the future is how to manage the forest for timber production while conserving or improving other important ecosystem services

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call