Abstract

BackgroundCementless total knee arthroplasty has been developed to decrease the incidence of failure in younger and more active patients. However, failures are still more common in cementless versus cemented components. It is hypothesized that this is triggered by incomplete bone-tray contact. The present study compares the final contact area of a cementless tray as a function of the initial osteotomy flatness. MethodsEight surgeons prepared 14 cadaveric knees for cementless total knee replacement using standard instrumentation. The topography of each osteotomy was captured with a laser scanner; 3-dimensional computer models of the surfaces were generated. After scanning each tibia, the surgeons implanted cementless tibial trays using a manual impactor. Each tibia was then dissected, embedded in mounting resin, and sectioned. The sectioned blocks were observed under stereomicroscopy to identify points of bone-tray contact which were incorporated into the 3-dimensional models. Maps were then generated illustrating depicting contacting and noncontacting areas. ResultsThe mean initial flatness of all specimens was 1.1 ± 0.35 mm. After impaction, 79.4% ± 0.3% of the surface had established bony contact. Of the noncontacting areas, 17.6% were within 0.3 mm of the tray. Only 2.6% of the surface was at distances reported to impede ingrowth. Noncontacting areas were typically located centrally. A trend in decreasing percent contact area with increased flatness tolerance was observed (R2 = 0.605). Conclusion(1) There is an inverse correlation between the flatness of the tibial osteotomy and the percentage of the bony surface in contact with underside of the tibial tray. (2) Almost all tray-tibia contact is generated during implantation through flattening of elevated features on the tibial surface. (3) Gaps between the tray and the tibia are consistently located in the central regions of the osteotomy proximal to the medullary canal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call