Abstract

In this study, an Fe-La-CS adsorbent with a reticulated structure was prepared by an in situ method, which was able to adsorb arsenate efficiently over a wide pH range of 3–11. The incorporation of iron and lanthanum ions broadened the tolerant pH range of the adsorbent compared with chitosan beads (CS). Arsenic was mainly present in the pH range of 3–9 as two forms, H2AsO4− and HAsO42−. Calculations using the density-functional theory (DFT) showed that in the Ligand interactions and electrostatic interactions dominate in the pH range, with surface precipitation, and hydrogen bonding interactions playing a facilitating role. The background ions mainly compete with arsenic adsorption for electrostatic interaction sites. However, due to the different valence states of the background ions, the competition intensity is different. Such as low valence state representative ions Na+, K+ competitiveness is weak, and arsenic competition adsorption first occupy different adsorption sites, therefore, from the quantum chemistry and molecular dynamics point of view of Na+, K+ on arsenic adsorption almost no effect. Cl−, SO42− will have some influence on arsenic adsorption because of the same charge with arsenic, but the charged amount is smaller than arsenic and the molecular structure is different from that of arsenic, so the influence is not very big. In summary, the material design of Fe-La-CS adsorbent has great potential and theoretical significance for selective purification of heavy metal wastewater at wide pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.