Abstract

Message brokers see widespread adoption in modern IT landscapes, with Apache Kafka being one of the most employed platforms. These systems feature well-defined APIs for use and configuration and present flexible solutions for various data storage scenarios. Their ability to scale horizontally enables users to adapt to growing data volumes and changing environments. However, one of the main challenges concerning message brokers is the danger of them becoming a bottleneck within an IT architecture. To prevent this, knowledge about the amount of data a message broker using a specific configuration can handle needs to be available. In this paper, we propose a monitoring architecture for message brokers and similar Java Virtual Machine-based systems. We present a comprehensive performance analysis of the popular Apache Kafka platform using our approach. As part of the benchmark, we study selected data ingestion scenarios with respect to their maximum data ingestion rates. The results show that we can achieve an ingestion rate of about 420,000 messages/second on the used commodity hardware and with the developed data sender tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.