Abstract

Bionics is a fascinating subject that has inspired many inventions through learning from biological structures and functions. In this work, a coupled multi-physics model has been developed to characterize ocular water evaporation with realistic eyelash structures taken into account. From a chemical engineering perspective, the protective function of human eyelashes in terms of evaporation inhibition has been rationally revealed. Systematic investigations were carried out to elucidate the effects of different eyelash lengths, orientations and inlet air directions on water evaporation on the ocular surface. The results clearly demonstrate that regardless of inlet air directions and eyelash orientations, increasing eyelash length from zero to an optimal length can effectively reduce water evaporation. However, further increase in the eyelash length can lead to enhanced evaporation. For the normal and parallel inlet air directions, the optimal eyelash length is around 15-30% of the eye width and can offer approximately 10-30% evaporation reduction when compared with the cases without eyelashes. These values are independent of the eyelash orientation. This investigation provides valuable data for in-depth understanding of the protective function of the eyelashes, which can be used in the future to improve and optimize bionic designs inspired by human eyelashes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.