Abstract
Bacteria in wounds can lead to stagnation of wound healing as well as to local or even systemic wound infections up to potentially lethal sepsis. Consequently, the bacterial load should be reduced as part of wound treatment. Therefore, the efficacy of simple mechanical wound debridement should be investigated in terms of reducing bacterial colonisation. Patients with acute or chronic wounds were assessed for bacterial colonisation with a fluorescence camera before and after mechanical wound debridement with sterile cotton pads. If bacterial colonisation persisted, a second, targeted wound debridement was performed. A total of 151 patients, 68 (45.0%) men and 83 (55.0%) women were included in this study. The male mean age was 71.0 years and the female 65.1 years. By establishing a new analysis method for the image files, we could document that the bacterial colonised areas were distributed 21.9% on the wound surfaces, 60.5% on the wound edges (up to 0.5 cm) and 17.6% on the wound surroundings (up to 1.5 cm). One mechanical debridement achieved a significant reduction of bacterial colonised areas by an average of 29.6% in the wounds, 18.9% in the wound edges and 11.8% in the wound surroundings and was increased by performing it a second time. It has been shown that even a simple mechanical debridement with cotton pads can significantly reduce bacterial colonisation without relevant side effects. In particular, the wound edges were the areas that were often most contaminated with bacteria and should be included in the debridement with special attention. Since bacteria remain in wounds after mechanical debridement, it cannot replace antimicrobial therapy strategies, but offer a complementary strategy to improve wound care. Thus, it could be shown that simple mechanical debridement is effective in reducing bacterial load and should be integrated into a therapeutic approach to wounds whenever appropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.