Abstract

Abstract Background Agricultural activities are estimated to contribute 70% of nitrates, 28% of phosphates and 76% of sediments measured in UK rivers. Catchments dominated by agriculture also have elevated levels of pesticides and bacterial pathogens. European member states have a policy commitment to tackle this pollution through the water framework directive. Here we report on the results of a systematic map to investigate and describe the nature and coverage of research pertaining to the effectiveness of 6 on-farm mitigation measures, slurry storage, cover/catch crops, woodland creation; controlled trafficking, subsoiling and vegetated buffer strips for delivering an improved water environment in terms of a reduction in nitrogen (N), phosphorus (P), sediment, pesticides and faecal indicator organisms (FIOs) or pathogens from faecal material. Methods Research evidence for the effectiveness of the 6 on-farm mitigation measures for delivering an improved water environment (as detailed above) was collated using English language search terms for temperate farming systems in Europe, Canada, New Zealand and northern states of the United States of America. Searches for literature were made from online publication databases, search engines, specialist websites and bibliographies of topic specific reviews. Recognised experts, authors and practitioners were also contacted to identify unpublished literature. Articles were screened for relevance at title, abstract and full text using predefined inclusion criteria set out in an a priori published protocol. All relevant articles were mapped in a searchable database using pre-defined coding and critically appraised for relevance and reliability. Articles reporting the same study were removed. All full text studies without confounding factors were identified and coded for in a separate searchable database. Results A total of 718 articles were included in the database. Buffer strips were the most commonly studied intervention followed by cover crops and slurry storage. Little evidence was found for woodland creation and sub-soiling. No studies were found for controlled trafficking on grassland. Nitrogen was most frequently measured, followed by P, sediment, pesticides and FIOs or pathogens from faecal material. Conclusions The majority of the evidence collated in this map investigated the effectiveness of buffer strips and cover crops for improving water quality. This evidence was predominantly focussed on reducing N pollution. An evidence gap exists for the impact of cover/catch crops in reducing leaching of pesticides, FIOs and pathogens, and for organic forms of N and P. There was limited research investigating the effectiveness of buffer strips for reducing leaching of organic forms of N or P, or for pesticides that are currently authorised for use/commonly used in UK agriculture. Further, long term studies across different seasons with controls, pre and post water quality measurements and multiple sampling points from both field and rivers would improve the evidence base. Evidence gaps exist for woodland creation, subsoiling and controlled trafficking on grassland.

Highlights

  • Agricultural activities are estimated to contribute 70% of nitrates, 28% of phosphates and 76% of sediments measured in United Kingdom (UK) rivers

  • This study reports on the results of a systematic map to investigate the effectiveness of 6 on-farm mitigation measures for delivering an improved water environment in terms of a reduction in levels of any form of N or P, sediments, pesticides and faecal indicator organisms (FIOs) or pathogens from faecal material: 1. Slurry storage to reduce pathogens in slurry, and pollution incidents from spills and leaks [10]

  • Outcome Impact on water quality in terms of change in any form of N or P, sediment, pesticides and FIOs or pathogens from faecal material. This question was commissioned by the UK Department of Environment, Food and Rural Affairs (Defra) to describe the nature and coverage of research pertaining to the effectiveness of 6 on-farm mitigation measures to deliver an improved water environment

Read more

Summary

Introduction

Agricultural activities are estimated to contribute 70% of nitrates, 28% of phosphates and 76% of sediments measured in UK rivers. Catchments dominated by agriculture have elevated levels of pesticides and bacterial pathogens. Nutrient applications in excess of plant needs, coupled with increased run-off from agricultural land, has contributed to a decline in water quality [2]. In the UK, for example, agricultural activities are estimated to be the source of 28% of phosphates, 70% of nitrates and 76% of sediments in rivers [3, 4], and catchments dominated by agricultural land use have elevated levels of bacterial pathogen counts [5]. Increased extreme weather events may increase the likelihood of heavy rains washing soil and pollutants into river systems, and drier summers will concentrate levels of pollutants in rivers [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call