Abstract

BackgroundShorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints.Methodology/principal findingsThis paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961–1990) and three climate change scenarios (2040–2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region.Conclusions/significanceThe extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

Highlights

  • The date of seeding is an important decision for wheat (Triticum aestivum L.) cultivation in Saskatchewan, Canada, since it has a significant impact on the timing of certain stages of phenological development, such as heading and ripening

  • Because spring wheat is grown in all crop districts and because it accounts for almost 70% of the total wheat production in this study area [12], it was selected as the reference crop

  • The model requires input parameters describing crop and soil characteristics as well as daily weather data. The latter include maximum and minimum temperature, global solar radiation and precipitation, which in the present case were obtained from Meteorological Service of Canada (MSC) [11]

Read more

Summary

Introduction

The date of seeding is an important decision for wheat (Triticum aestivum L.) cultivation in Saskatchewan, Canada, since it has a significant impact on the timing of certain stages of phenological development, such as heading and ripening. This can have a profound impact on the damage the plants experience from adverse weather conditions during the growing season, or late season events such as a killing frost (in fall). Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat It is unknown, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call