Abstract

Rice, one of the most important staple food crops in the world, is highly sensitive to soil salinity at the seedling stage. The ultimate yield of this crop is a function of the number of seedlings surviving after transplantation in saline water. Oryza sativa cv. IR64 is a high-yielding salinity-sensitive variety, while Pokkali is a landrace traditionally cultivated by the local farmers in the coastal regions in India. However, the machinery responsible for the seedling-stage tolerance in Pokkali is not understood. To bridge this gap, we subjected young seedlings of these contrasting genotypes to salinity and performed detailed investigations about their growth parameters, ion homeostasis, biochemical composition, and photosynthetic parameters after every 24h of salinity for three days. Taken together, all the physiological and biochemical indicators, such as proline accumulation, K+/Na+ ratio, lipid peroxidation, and electrolyte leakage, clearly revealed significant differences between IR64 and Pokkali under salinity, establishing their contrasting nature at this stage. In response to salinity, the Fv/Fm ratio (maximum quantum efficiency of Photosystem II as inferred from Chl a fluorescence) and the energy conserved for the electron transport after the reduction of QA (the primary electron acceptor of PSII), to QA-, and reduction of the end electron acceptor molecules towards the PSI (Photosystem I) electron acceptor side was higher in Pokkali than IR64 plants. These observations reflect a direct contribution of photosynthesis towards seedling-stage salinity tolerance in rice. These findings will help to breed high-yielding crops for salinity prone agricultural lands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call