Abstract

Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.