Abstract

Ultraviolet-B (UV-B) radiation is one of the abiotic stresses that can significantly affect the secondary metabolite accumulation in in vitro tissue cultures of medicinal plants. The present study investigated the effects of UV-B radiation on the secondary metabolites and antioxidant activities of Scutellaria baicalensis in vitro shoots grown at different concentrations of 6-benzyl aminopurine (6-BA), which is the cytokinin most widely used in plant tissue culture. The UV-B radiation caused significant increases in lipid peroxidation, total phenolic, and flavonoid contents, and antioxidant activities in the in vitro shoots grown at lower 6-BA concentrations (0 and 1mg L-1 ), while it did not cause any significant changes in those grown at higher 6-BA concentrations (2 and 3mg L-1 ). However, the UV-B radiation significantly altered the contents of main individual flavonoids at both lower and higher 6-BA concentrations. Upon UV-B radiation, aglycones (including baicalein, wogonin, and scutellarein) increased, while glucuronides such as baicalin and wogonoside decreased; this was more evident at higher 6-BA concentrations. This study demonstrated that the effects of UV-B radiation on the secondary metabolites of S. baicalensis in vitro shoots highly depended on the 6-BA concentration in the culture medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call