Abstract

Through synthesis and presentation of neuroendocrine self-antigens by major histocompatibility complex proteins, thymic epithelial cells (TECs) play a crucial role in programing central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor-2 (IGF-2) is the dominant gene/polypeptide of the insulin family that is expressed in TECs from different animal species and humans. Igf2 transcription is defective in the thymus of diabetes-prone bio-breeding rats, and tolerance to insulin is severely decreased in Igf2−/− mice. For more than 15 years now, our group is investigating the hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV-B4) could implicate the thymus as well, and interfere with the intrathymic programing of central tolerance to the insulin family and secondarily to insulin-secreting islet β cells. In this perspective, we have demonstrated that a productive infection of the thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data have demonstrated that CV-B4 infection of a murine medullary (m) TEC line induces a significant decrease in Igf2 expression and IGF-2 production. In these conditions, Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription was not detected in this cell line. Through the inhibition of Igf2 expression in TECs, CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin family and promote an autoimmune response against insulin-secreting islet β cells. Our major research objective now is to understand the molecular mechanisms by which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these cells.

Highlights

  • The major genetic determinants of type 1 diabetes (T1D) are the class II major histocompatibility complex (MHC) on chromosome 6 – which accounts for almost 50% of the genetic susceptibility – as well as a number of non-MHC genes, including the variable number of tandem repeat (VNTR) alleles upstream of the INS/IGF2 (IDDM2) locus, PTPN22, CCR5, IL2RA, IL10, and CTLA4

  • Type 1 diabetes occurrence has been related to a number of viruses but epidemiological studies have provided the strongest evidence that enteroviral infections, in particular, by coxsackievirus B (CV-B), are frequent events preceding T1D onset [2,3,4,5,6,7]

  • The mechanism most accredited to explain the link between CV-B infection and T1D is a specific tropism of the virus for insulin-secreting islet β cells [11] – that is, mediated by their expression of the specific virus receptor – and a bystander activation of autoreactive T cells by antigens released by β cells after their damage caused by CV-B infection [12]

Read more

Summary

Introduction

The major genetic determinants of type 1 diabetes (T1D) are the class II major histocompatibility complex (MHC) on chromosome 6 – which accounts for almost 50% of the genetic susceptibility – as well as a number of non-MHC genes, including the variable number of tandem repeat (VNTR) alleles upstream of the INS/IGF2 (IDDM2) locus, PTPN22, CCR5, IL2RA, IL10, and CTLA4. The association between T1D and viral infections has been previously reinforced by a genetic linkage between T1D susceptibility and host determinants of the antiviral response, such as the antiviral oligoadenylate synthase (OAS1) and the interferon-induced helicase (IFIH1), which intervene in innate immunity by recognition of RNA genome of picornaviruses, such as enteroviruses [16, 17] Besides this pancreotropism of CV-B, we have been exploring for a long time another mechanism that could play an essential and complimentary role in the development of the diabetogenic autoimmune response, namely, thymus infection. The predominant expression of IGF-2 in the thymus is associated with a higher immunological tolerance to this protein and seems to confer significant tolerogenic properties to IGF-2- and IGF-2-derived antigen sequences On these experimental bases, we have proposed the novel concept of “negative self-vaccination” that is under current development through DNA vaccine methodology [48]

Thymus Infection by Enteroviruses
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.