Abstract

AimsAn increase in reactive oxygen species leads to formation of covalent bonds between sulfur atoms, thus thiol/disulfide homeostasis shifts towards the disulfide direction and oxidative damage occurs. We aimed to determine thiol/disulfide homeostasis in children with T1DM. MethodsThiol/disulfide homeostasis was evaluated in 30 patients with T1DM and 30 age, gender matched healthy controls. Thiol/disulfide homeostasis parameters were measured using a novel automated measurement method and correlation between demographic data and parameters was measured. ResultsThere weren’t any significant differences in age or gender between the T1DM and control groups. T1DM group, findings were as follows: native thiol: 388.3 ± 76.7 µmol/L, total thiol: 426.2 ± 87 µmol/L, disulfide: 18.9 ± 7 µmol/L, control group findings were as follows: native thiol: 423.1 ± 45.2 µmol/L, total thiol: 455.7 ± 49.9 µmol/L, disulfide: 16.2 ± 5.6 µmol/L. The disulfide/native thiol and disulfide/total thiol ratios were significantly higher in the T1DM group (p = 0.005 and p = 0.004, respectively), whereas the native thiol level and the native thiol/total thiol ratio were significantly lower in the T1DM group than in the control group (p = 0.036 and p = 0.015, respectively). There wasn’t significant correlation between demographic data and thiol/disulfide homeostasis parameters. DiscussionThis study shows that dynamic thiol/disulfide homeostasis in children with T1DM shifts towards the disulfide direction. We think that this shift is caused by oxidative damage in β-cells. Additional research on thiol/disulfide homeostasis in children with T1DM might provide techniques for early detection of oxidative damage in β-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call