Abstract

In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO2 and NR/Al2O3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.