Abstract
AbstractPinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding its climate fingerprint into foundational ocean biogeochemical observations and complicating the interpretation of long‐term biogeochemical change. Here, we quantify the influence of the Pinatubo climate perturbation on externally forced decadal and multi‐decadal changes in key ocean biogeochemical quantities using a large ensemble simulation of the Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly captures the ocean biogeochemical response to the eruption. We find increased uptake of apparent oxygen utilization and preindustrial carbon over 1993–2003. Nearly 100% of the forced response in these quantities are attributable to Pinatubo. The eruption caused enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocarbon changes that appear 10–15 years after the eruption. Our results help contextualize observed change and contribute to improved constraints on uncertainty in the global carbon budget and ocean deoxygenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.