Abstract

Pregnancy induces numerous modifications in the musculoskeletal system of the female body. Since one of the essential roles of the lumbopelvic structure is to support mechanical loads in the upright position, this study was designed to simulate the response of this complex to the growing foetus in pregnant women. The authors hypothesized that posture (i.e., lordosis and muscle involvement) under pregnancy conditions might be adjusted to minimize the demands of the obstetrical load. The analysis of the load on the musculoskeletal system during gestation was made based on numerical simulations carried out in the AnyBody Modeling System. The pregnancy-related adjustments such as increased pelvic anteversion and increased lumbar lordosis enhance the reduction of muscle activation (e.g., erector spinae, transversus abdominis or iliopsoas), muscle fatigue and spinal load (reaction force). The results may help develop antenatal exercise programs targeting core strength and pelvic stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call