Abstract

BackgroundThe need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts. Biorefineries based on lignocellulosic feedstocks could yield high-value products such as ethyl acetate, dodecane, ethylene, and hexane. This work focuses on assessing biochemical and biomass to electricity platforms for conversion of Banagrass and Energycane into valuable fuels and chemicals using the tri-fold sustainability metrics.ResultsThe production cost of various products produced from Banagrass was $1.19/kg ethanol, $1.00/kg ethyl acetate, $3.01/kg dodecane (jet fuel equivalent), $2.34/kg ethylene and $0.32/kW-h electricity. The production cost of different products using Energycane as a feedstock was $1.31/kg ethanol, $1.11/kg ethyl acetate, $3.35/kg dodecane, and $2.62/kg ethylene. The sensitivity analysis revealed that the price of the main product, feedstock cost and cost of ethanol affected the profitability the overall process. Banagrass yielded 11% higher ethanol compared to Energycane, which could be attributed to the differences in the composition of these lignocellulosic biomass sources. Acidification potential was highest when ethylene was produced at the rate of 2.56 × 10−2 and 1.71 × 10−2 kg SO2 eq. for Banagrass and Energycane, respectively. Ethanol production from Banagrass and Energycane resulted in a global warming potential of − 12.3 and − 40.0 g CO2 eq./kg ethanol.ConclusionsUtilizing hexoses and pentoses from Banagrass to produce ethyl acetate was the most economical scenario with a payback period of 11.2 years and an ROI of 8.93%, respectively. Electricity production was the most unprofitable scenario with an ROI of − 29.6% using Banagrass/Energycane as a feedstock that could be attributed to high feedstock moisture content. Producing ethylene or dodecane from either of the feedstocks was not economical. The moisture content and composition of biomasses affected overall economics of the various pathways studied. Producing ethanol and ethyl acetate from Energycane had a global warming potential of − 3.01 kg CO2 eq./kg ethyl acetate.

Highlights

  • The need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts

  • The process simulation for the different products was performed using multiple pathways including the production of biofuels, biochemicals, advanced biofuels and electricity

  • In general, had higher product yields compared to Energycane, which could be attributed to a higher fraction of fermentable sugars (Table 1)

Read more

Summary

Introduction

The need for liquid fuels in the transportation sector is increasing, and it is essential to develop industrially sustainable processes that simultaneously address the tri-fold sustainability metrics of technological feasibility, economic viability, and environmental impacts. Several techno-economic analyses and life cycle assessment (LCA) studies had been carried out for the lignocellulosic ethanol production to quantify the economic viability and environmental impacts. Techno-economic studies have focused on various aspects including the effect of pretreatments on ethanol production, integrating first and second generation ethanol production [10], using different feedstocks, and effect of an increase in enzyme yields [11,12,13,14,15,16,17,18]. For the LCA, most of the studies had focused on feedstocks, comparing ethanol production processes with other value-added products, and the impact of various allocation methods on the LCA results [19,20,21,22,23,24,25,26]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.