Abstract

AbstractWith climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small watershed scale across the western U.S., a region with a wide range of climate types. We compared snow cover variables derived from MODIS, snow persistence (SP), and snow season (SS), to more commonly utilized metrics, snow fraction (fraction of precipitation falling as snow, SF), and peak snow water equivalent (SWE). Each variable represents different information about snow, and this comparison assesses similarities and differences between the snow metrics. Next, we evaluated how two snow variables, SP and SWE, related to annual streamflow (Q) for 119 USGS reference watersheds and examined whether these relationships varied for wet/warm (precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results showed high correlations between all snow variables, but the slopes of these relationships differed between climates, with wet/warm watersheds displaying lower SF and higher SWE for the same SP. In dry/cold watersheds, both SP and SNODAS SWE correlated with Q spatially across all watersheds and over time within individual watersheds. We conclude that SP can be used to map spatial patterns of annual streamflow generation in dry/cold parts of the region. Applying this approach to the Upper Colorado River Basin demonstrates that 50% of streamflow comes from areas >3,000 masl. If the relationship between SP and Q is similar in other dry/cold regions, this approach could be used to estimate annual streamflow in ungauged basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.