Abstract
Software metrics such as coverage or mutation scores have been investigated for the automated quality assessment of test suites. While traditional tools rely on software metrics, the field of self-driving cars (SDCs) has primarily focused on simulation-based test case generation using quality metrics such as the out-of-bound (OOB) parameter to determine if a test case fails or passes. However, it remains unclear to what extent this quality metric aligns with the human perception of the safety and realism of SDCs. To address this (reality) gap, we conducted an empirical study involving 50 participants to investigate the factors that determine how humans perceive SDC test cases as safe, unsafe, realistic, or unrealistic. To this aim, we developed a framework leveraging virtual reality (VR) technologies, called SDC-Alabaster, to immerse the study participants into the virtual environment of SDC simulators. Our findings indicate that the human assessment of safety and realism of failing/passing test cases can vary based on different factors, such as the test's complexity and the possibility of interacting with the SDC. Especially for the assessment of realism, the participants' age leads to a different perception. This study highlights the need for more research on simulation testing quality metrics and the importance of human perception in evaluating SDCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.