Abstract

Phosphorylation of light-harvesting antenna proteins redirects absorbed light energy between reaction centres of photosynthetic membranes. A generally accepted explanation for this is that electrostatic forces drive the more negatively charged, phosphorylated antenna proteins between membrane domains that differ in surface charge. However, structural studies on soluble phosphoproteins indicate that phosphorylated amino acid side chains have specific effects on molecular recognition, by ligand blocking or by intramolecular interactions which alter protein structure. These studies suggest alternative mechanisms for phosphorylation in control of pairwise protein-protein interactions in biological membranes. Thus, in photosynthesis, the surface charge model is only one possible interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.