Abstract

Subsurface wastewater infiltration systems (SWIS) are environmentally-friendly technologies for domestic wastewater treatment, where pollutants are removed by physical, chemical and biological reactions. However, SWIS also produce nitrous oxide (N2O), a potent greenhouse gas. Distribution of dissolved oxygen and nitrogen in SWIS determines denitrification process, which affects microbial activity and N2O release degree in different layers of system. Top layer of SWIS substrate is exposed to environmental factors such as freeze-thaw (FT), which changes microbial community structure in different substrates. Exact mechanisms of microbial-mediated N2O emissions in SWIS are still unclear despite extensive research. Therefore, this study simulated FT process using in-situ SWIS, to investigate how FT disturbance affects microbial community structure and N2O release in SWIS profiles. Results showed that after the ninth freeze-thaw cycle, FT stimulated anaerobic bacteria activities such as Euryarchaeota, accounting for 78.4 % of total Euryarchaeota population in middle (60 cm) and 33.97 % in the lower layer. Under low oxygen conditions, NO2−-N accumulation in middle and lower layers provided a sufficient nitrogen source for Euryarchaeota. Canonical correlation analysis (CCA) showed Euryarchaeota was significantly correlated with N2O emissions in middle and lower layers during FT, contributing 31.68 %–32.01 % and 61.78 %–65.15 %, respectively. These results suggested that FT disturbance enhanced denitrification by anaerobic bacteria in middle and lower layers of SWIS, significantly increasing N2O emissions. However, specific pathways and mechanisms of N2O production by Euryarchaeota remain to be elucidated in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call