Abstract
Cyanobacteria and their toxins widely exist in freshwater ecosystems. Microcystis aeruginosa is among dominant bloom-forming cyanobacteria. Water temperature is a key factor influencing the life cycle of M. aeruginosa. We simulated elevated temperature (4–35 °C) experiment and cultured M. aeruginosa during the overwintering, recruitment and rapid growth phases. The results showed that M. aeruginosa recovered growth after overwintering at 4–8 °C and recruited at 16 °C. The total extracellular polymeric substance (TEPS) concentration increased rapidly at 15 °C. The actual quantum yield of photosystem II (Fv′/Fm′) peaked at 20 °C during the rapid growth phase, and the optimum temperature of M. aeruginosa growth was 20–25 °C. Additionally, TEPS and microcystins (MCs) secretion peaked at 20–25 °C. The cell density accumulated rapidly from 26 °C to 35 °C. Furthermore, enzymes of RuBisCO and FBA related to photosynthetic activity were confirmed to contribute to the metabolism, as well as mcyB gene was affected by elevated temperature. Our results provide insights of the physiological effects and metabolic activity during annual cycle of M. aeruginosa. And it is predicted that global warming may promote the earlier recruitment of M. aeruginosa, extend the optimum growth period, enhance the toxicity, and finally intensify M. aeruginosa blooms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.