Abstract
BackgroundUnilateral naris occlusion (UNO) has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x).MethodsThe olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant) experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil), mice were challenged with a single odor versus a mixture comparison (A vs. A + B). In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached.ResultsFor the habituation experiment, UNOs (n = 10) and controls (n = 9) dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p < 0.06). A replication of this study (7 controls & 8 UNOs) confirmed that controls did not differentiate Odor A and a 2% mixture of B in A but UNOs did not (p < 0.05). For the discrimination experiment, 4 UNOs and 4 controls were shaped to dig in one of two containers of sand that contained the S+ odor (Odor B) to obtain sugar pellet rewards. As in the habituation experiment, UNOs displayed greater olfactory capacity than controls on this task. Controls and UNOs had an average mixture discrimination threshold of 1.6% (± 0.4) and 0.22% (± 0.102) respectively, a difference that was statistically significant (p < 0.02).ConclusionsAdult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers compensatory processes throughout the olfactory system.
Highlights
Unilateral naris occlusion (UNO) has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity
If less taxing, test of olfaction, 10 day old mice that had undergone UNO and contralateral bulb-x the day after birth could still use maternal pheromone to find their mother's nipple [7]. These results suggest that UNO does not create absolute deprivation nor does it lead to marked anosmia in the ipsilateral olfactory system
Habituation-Dishabituation In a series of preliminary tests on 13 untreated adult mice it was determined that: (1) the CD-1 strain of mice used in this study did not have an inherent preference for investigating either of the tests odors, (2) that either Iso-amyl acetate (IA) stock or ethyl butyrate (EB) could serve as habituation or dishabitutation odors, and (3) that normal mice did not show statistically significant dishabituation to a 2% mixture of EB stock in IA stock after being habituated on IA, though they did show dishabituation to a 10% mixture
Summary
Unilateral naris occlusion (UNO) has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. A study that used air-dilution olfactometry and operant conditioning methods, was able to show that adult rats receiving UNO perinatally and adult contralateral bulb-x could detect and discriminate very dilute odors near their detection levels prior to surgery [5]. If less taxing, test of olfaction, 10 day old mice that had undergone UNO and contralateral bulb-x the day after birth could still use maternal pheromone to find their mother's nipple [7] These results suggest that UNO does not create absolute deprivation nor does it lead to marked anosmia in the ipsilateral olfactory system. The results support the counterintuitive conclusion that the olfactory capacity of the mice in the UNO group exceeded that of controls
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.