Abstract

AbstractPrevious studies have hypothesized that the width of deep convection should positively scale with lifting condensation level (LCL) height. To evaluate this hypothesis, we analyzed idealized large‐eddy simulations with varying LCL heights and initial warm bubble widths in unsheared environments with comparable convective available potential energy. For a given initial warm bubble width, simulations with higher LCLs result in wider, deeper, and stronger cloudy updrafts compared to simulations with lower LCLs. Rising dry thermals in higher LCL simulations experience longer residence times within the sub‐cloud layer, and consequently entrain more conditionally unstable air and grow wider before reaching the LCL. The resulting cloudy updrafts are wider, deeper, and have faster vertical velocities because of a reduction in entrainment‐driven dilution of buoyancy, relative to lower LCL simulations. These results confirm the hypothesized positive relationship between LCL height and deep convective updraft width, and provide a physical explanation for this relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call