Abstract

This study spotlights the fundamental insights about the structure and static first hyperpolarizability (β) of a series of 2,4-dinitrophenol derivatives (1-5), which are designed by novel bridging core modifications. The central bridging core modifications show noteworthy effects to modulate the optical and nonlinear optical properties in these derivatives. The derivative systems show significantly large amplitudes of first hyperpolarizability as compared to parent system 1, which are 4, 46, 66, and 90% larger for systems 2, 3, 4, and 5, respectively, at Moller-Plesset (MP2)/6-31G* level of theory. The static first hyperpolarizability and frequency dependent coupled-perturbed Kohn-Sham first hyperpolarizability are calculated by means of MP2 and density functional theory methods and compared with respective experimental values wherever possible. Using two-level model with full-set of parameters dependence of transition energy (ΔΕ), transition dipole moment (μ(0)) as well as change in dipole moment from ground to excited state (Δμ), the origin of increase in β amplitudes is traced from the change in dipole moment from ground to excited state. The causes of change in dipole moments are further discovered through sum of Mulliken atomic charges and intermolecular charge transfer spotted in frontier molecular orbitals analysis. Additionally, analysis of conformational isomers and UV-Visible spectra has been also performed for all designed derivatives. Thus, our present investigation provides novel and explanatory insights on the chemical nature and origin of intrinsic nonlinear optical (NLO) properties of 2,4-dinitrophenol derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.