Abstract

Background Tissue homeostasis is guaranteed by stem proliferating reserve, depending on dynamic changes in gene expression. A high plasticity is shown by the haematopoietic stem cells, potential source for liver regeneration. Aim We aimed to evaluate the gene expression modifications induced by human haematopoietic stem cell therapy after liver injury in rats. Subjects Rats were sorted as follows: (A) human-haematopoietic stem cell injection after allyl alcohol liver damage; (B) only haematopoietic stem cell injection; (C) only allyl alcohol injection; and (D) sacrifice without any treatment. Methods Livers, spleens and bone marrows were analysed with flow-cytometry. Livers were also studied by reverse-transcription PCR, histology, immunohistochemistry and microarray analysis; selected genes were confirmed by real-time PCR. Results In subset A, haematopoietic stem cells were selectively recruited by liver, with respect to the group B, and they improved the liver regeneration process compared to group C. As regards microarrays, haematopoietic stem cell infusion upregulates 265 genes and downregulates 149 genes. Differentially regulated genes belong to a broad range of functional pathways, including proliferation, differentiation, adhesion/migration and transcripts related to oval-cell activation. Real-time PCR validated array results. Conclusions Our study confirmed the capacity of haematopoietic stem cells to contribute to liver regeneration. Moreover, microarray analysis led to the identification of genes whose regulation strongly correlates with a more efficient process of liver repair after haematopoietic stem cell injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.