Abstract

Computational fluid dynamics simulations were performed to examine the passive recruitment of epibionts onto Devonian spiriferide brachiopod host shells. Because many planktonic larvae and spores are propulsion-inefficient swimmers, we determined the areas most prone to settlement in terms of inertial impaction and direct interception, which are characteristic of higher and lower pressure, respectively. Simulations on a unique specimen of Paraspirifer with a geopetal structure of broken brachidia suggest that the larva of Aulopora on the shell was transported and had settled onto the shell through inertial impaction after the host was dead and overturned on the sea floor. In the case of an ideal life posture, the spiriferide models received higher pressure on the shell surfaces at the forward and rearward stagnation areas and lower pressure along the shell margins and the anterior part of the sulcus, regardless of whether the ventral or the dorsal valve was facing upstream. Both sites seem to be available for epibionts by way of direct interception or inertial impaction. Our results indicate that the initial recruitment of most epibionts is accidental and passive, whereas the directions and patterns of epibiont growth suggest a biological response to ambient conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.