Abstract
We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.