Abstract

Root–soil mechanical interactions are of vital importance in soil reinforcement by plant roots. However, it is unclear how the angles of the roots in the soil affect the root–soil mechanical interactions. To better understand the effect of this factor on root–soil mechanical interactions, pullout tests were conducted on alfalfa (Medicago sativa L.) roots with five root diameter groups (0.10–0.30 mm, 0.31–0.50 mm, 0.51–0.70 mm, 0.71–0.90 mm and 0.91–1.10 mm) and four embedding angles (30°, 45°, 60° and 90°) in sandy loam soil. Root tensile tests were also carried out to understand the process of root failure in the pullout tests. The results showed that the roots had two failure modes, slippage failure and breakage failure. The critical diameter of the two failure modes was 0.35 mm. Peak pullout force and pullout energy were positively related to the root diameter in power functions. Displacement was negatively related to the root diameter and embedding angle in exponential functions. Peak pullout force, root–soil friction coefficient and pullout energy all increased and then decreased with increasing embedding angles. The peak pullout force and root–soil friction coefficient reached their maximum values under an embedding angle of 60°, and pullout energy reached the maximum value under an embedding angle of 45°. Pullout energy was suggested as a preferred index of root–soil mechanical interactions for both thick/fine roots and inclined/upright roots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.