Abstract

Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call