Abstract

False memories arising from associatively related lists are a robust phenomenon that resists many efforts to prevent it. However, a few variables have been shown to reduce this form of false memory. Explanations for how the reduction is accomplished have focused on either output monitoring processes or constraints on access, but neither idea alone is sufficient to explain extant data. Our research was driven by a framework that distinguishes item-based and event-based distinctive processing to account for the effects of different variables on both correct recall of study list items and false recall. We report the results of three experiments examining the effect of a deep orienting task and the effect of visual presentation of study items, both of which have been shown to reduce false recall. The experiments replicate those previous findings and add important new information about the effect of the variables on a recall test that eliminates the need for monitoring. The results clearly indicate that both post-access monitoring and constraints on access contribute to reductions in false memories. The results also showed that the manipulations of study modality and orienting task had different effects on correct and false recall, a pattern that was predicted by the item-based/event-based distinctive processing framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.