Abstract

AbstractThe resolution of a digital elevation model (DEM) is a crucial factor in watershed hydrologic and environmental modelling. DEM resolution can cause significant variability in the representation of surface topography, which further affects quantification of hydrologic connectivity and simulation of hydrologic processes. The objective of this study is to examine the effects of DEM resolution on (1) surface microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal variations of hydrologic processes. A puddle‐to‐puddle modelling system was utilized for surface delineation and modelling of the puddle‐to‐puddle overland flow dynamics, surface runoff, infiltration, and unsaturated flow for nine DEM resolution scenarios of a field plot surface. Comparisons of the nine modelling scenarios demonstrated that coarser DEM resolutions tended to eliminate topographic features, reduce surface depression storage, and strengthen hydrologic connectivity and surface runoff. We found that reduction in maximum depression storage and maximum ponding area was as high as 97.56% and 76.36%, respectively, as the DEM grid size increased from 2 to 80 cm. The paired t‐test and fractal analysis demonstrated the existence of a threshold DEM resolution (10 cm for the field plot), within which the DEM‐based hydrologic modelling was effective and acceptable. The effects of DEM resolution were further evaluated for a larger surface in the Prairie Pothole Region subjected to observed rainfall events. It was found that simulations based on coarser resolution DEMs (>10 m) tended to overestimate ponded areas and underestimate runoff discharge peaks. The simulated peak discharge from the Prairie Pothole Region surface reduced by approximately 50% as the DEM resolution changed from 2 to 90 m. Fractal analysis results elucidated scale dependency of hydrologic and topographic processes. In particular, scale analysis highlighted a unique constant–threshold–power relationship between DEM scale and topographic and hydrologic parameters/variables. Not only does this finding allow one to identify threshold DEM but also further develop functional relationships for scaling to achieve valid topographic characterization as well as effective and efficient hydrologic modelling. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.