Abstract

BackgroundWolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size.Methodology/principal findingsThree different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae.Conclusions/significanceIn all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion.

Highlights

  • Infectious diseases caused by arboviruses are a growing global health concern

  • Several countries are seeking new vector control tools to reduce the transmission of arboviruses such as dengue, chikungunya and Zika. One of these innovative approaches relies on the release of Aedes aegypti mosquitoes infected with the endosymbiont Wolbachia, since this bacterium can block the aforementioned viruses and interrupt transmission

  • Wolbachia-infected Ae. aegypti mosquitoes are likely to lay their eggs in local breeding sites already colonized by wild uninfected conspecifics and/or Ae. albopictus larvae

Read more

Summary

Introduction

Infectious diseases caused by arboviruses are a growing global health concern. Mosquitoes from the genus Aedes and mostly important Ae. aegypti (Linnaeus, 1762) and Ae. albopictus (Skuse, 1894) have a prominent role in transmitting several arboviruses to humans. In the last 50 years, dengue virus (DENV) has shown a 30-fold increase in global incidence, with around 400 million new infections yearly [1,2,3]. Zika virus (ZIKV) emerged in the Pacific and later in the Americas, causing a public health emergency due to its association with microcephaly in newborns [6,7,8]. Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. There is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call