Abstract

Despite nearly three decades of paleomagnetic research on the extensive Chinese loess deposits, a convincing explanation has yet to be developed for how Chinese loess becomes magnetized. To address this problem, we conducted re-deposition experiments using weakly consolidated Holocene Chinese loess that was disaggregated in the laboratory, and compare our results with published paleomagnetic data. We simulated a depositional remanent magnetization (DRM) associated with dry deposition of eolian sediments, and a post-depositional remanent magnetization (PDRM) in which the sediment was water-saturated after deposition. The simulated DRM faithfully records the declination of the applied field, but with systematic inclination flattening. Addition of minor water slightly improves recording of the applied field, but inclination flattening persists. Reliable recording of the applied field occurs for PDRM simulation in water-saturated sediment. Our synthesis of paleomagnetic data from Chinese loess indicates that time-averaged paleomagnetic directions are often indistinguishable from the expected geocentric axial dipole (GAD) field, but in many cases inclinations are shallower than for a GAD field. We conclude that the Chinese loess is magnetized by a combination of DRM and PDRM mechanisms, with water content providing the dominant control on which mechanism aligns the detrital mineral fraction. Where pedogenesis causes neoformation of magnetic minerals, an additional chemical remanent magnetization (CRM) will occur. The magnetization of Chinese loess therefore appears to be controlled by a complex time-varying combination of DRM, PDRM and CRM mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call