Abstract

The use of haptic devices to provide force feedback in teleoperation has been shown to enhance performance. An experiment was conducted to examine whether artificial force feedback is utilized in the same manner as real force feedback in a simulated laparoscopic tissue-probing task. Forces in probing a double-layer silicon gel mass were replicated and exaggerated in a virtual environment using a haptic device. Ten subjects performed the probing task in four different conditions: 1) realistic force feedback, 2) exaggerated feedback, 3) disproportionately exaggerated forces, and 4) reversed and disproportionately exaggerated forces. Results showed a significantly higher maximum force, detection time and error rate in virtual probing than in real probing. Time to task completion was significantly different between the virtually realistic and exaggerated force feedback conditions. These results suggest that artificial force information may be processed differently than real haptic information, leading to higher force application, inefficiency, and reduced accuracy in tissue probing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.