Abstract

River ecosystems interact strongly with adjacent terrestrial environments and receive dissolved organic matter (DOM) from a variety of sources, all of which are vulnerable to human activities and natural processes. However, it is unclear how and to what extent human and natural factors drive DOM quantity and quality changes in river ecosystems. Here, three fluorescence components were identified via optical techniques, including two humic-like substances and one protein-like component. The protein-like DOM was mainly accumulated in anthropogenically impacted regions, while humic-like components exhibit the opposite trend. Furthermore, the driving mechanisms of both natural and anthropogenic factors on the variations in DOM composition were investigated using partial least squares structural equation modelling (PLS-SEM). Human activities, especially agriculture, positively influence the protein-like DOM directly by enhancing anthropogenic discharge with protein signals and also indirectly by affecting water quality. Water quality directly influences the DOM composition by stimulating in-situ production through a high nutrient load from anthropogenic discharge and inhibiting the microbial humification processes of DOM due to higher salinity levels. The microbial humification processes can also be restricted directly by a shorter water residence time during the DOM transport processes. Furthermore, protein-like DOM was more sensitive to direct anthropogenic discharge than indirect in-situ production (0.34 vs. 0.25), especially from non-point source input (39.1%), implying that agricultural industry optimization may be an efficient way to improve water quality and reduce protein-like DOM accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call