Abstract

The single-chain observation of isolated giant DNAs complexed with a cationic surfactant, CTAB, was performed using fluorescence microscopy. The DNA−CTAB complex exhibits a re-entrant transition, collapsed globule → elongated coil → collapsed globule, with an increase in the alcohol concentration. The existence of DNA in its coil state at an intermediate concentration of alcohol implies that this environment is a good solvent for the DNA chains. On the other hand, the presence of the globule state at both low and high alcohol concentrations indicates that this is a poor solvent for the complex. Regardless of this fact, the globule generated at a high alcohol concentration is unexpectedly soluble; i.e., this is a good solvent for the complex with respect to the solvability, but it is a bad solvent with respect to the polymer conformation. This unique property of the complex is attributable to the effect of micelle formation, where surfactant molecules cover the entire globule and lower the surface energy o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.