Abstract

Metal pollution in lake wetlands has become increasingly serious in China and worldwide due to the rapid growth of urbanization and agricultural activities. However, comprehensive assessments of metal pollution in lake wetland sediments that are associated with land use change have been limited from an international perspective. Metal concentrations (As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn) were measured in the surface soils and surrounding sediments of five land use types in the eastern Hongze Lake wetlands, including Farmland (FL), Culture Ponds (CP), Reed Land (RL), Poplar Forests (PF), and Willow Forests (WF). The metal pollution status was assessed using the geo-accumulation index and the potential ecological risk index; The results showed that the average concentrations of As, Cd, Mn, and Zn in the surface soils and As, Cd, Cu, and Zn in the sediments, exceeded the background values of Jiangsu Province, China. The FL soils and surrounding sediments were moderately contaminated with As, whereas the sediments surrounding the CP were uncontaminated to moderately contaminated with Cd. Metal pollution in both soils and sediments was greater on farmland than on other types of land use. Furthermore, there were significant positive correlations between the values of the soil risk index and the values of the surrounding sediment risk index. Correlation analysis (CA) and principal component analysis (PCA) found that metals may be derived from agricultural activities such as the application of chemical and organic fertilizers, as well as domestic sewage, industrial wastewater, and geological anomalies. These findings shed new light on the quantitative impacts of adjacent land use practices on sediment metal pollution and provide a scientific foundation for wetland management decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.