Abstract

The advent of generative Large Language Models (LLMs) has greatly impacted the field of Natural Language Processing. However, it is inconclusive how generative LLMs perform on domain-specific information extraction tasks. This study compares the performance of GPT-4 and a rule-based information extraction method based on ChemDataExtractor on band gap information extraction, a task that has important implications for the materials science domain. No training data is required for either method, which is desirable because there is a lack of training data in the materials science domain compared with a variety of material information that is of interest. Manual evaluation on 415 randomly selected articles showed that the GPT-4 model achieved a higher level of accuracy in extracting materials' band gap information than the rule-based method (Correctness 87.95% vs 51.08%, Partial correctness 11.33% vs 36.87%, incorrectness 0.72% vs 12.05%). Further analysis of the errors reveals the strengths and weaknesses of the GPT-4 model compared to the rule-based method. The GPT-4 model shows stronger performance in interdependency resolution and complicated material name recognition, while it also has weaknesses in hallucination, identifying band gap values, and identifying band gap types. Revised prompt based on the error analysis leads to improved accuracy for GPT-4. To the best of our knowledge, this study is the first to compare the GPT-4 model and ChemDataExtractor for the band gap extraction task. This study provides evidence to support using generative LLMs for domain-specific information extraction tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.