Abstract

Urban landslides always occur where development has taken place on pre-existing unstable land. Due to rapid urbanization, human activities expand onto sloping terrain and disturb the geological environment, increasing the urban landslide risk. When a rapid flow-like landslide occurs, the landslide mobility can be affected by the presence of buildings located along its flow path. In this paper, the effect of building blockage on landslide mobility and the associated energy dissipation mechanisms are evaluated based on a well-documented landslide, which happened on 20 December 2015 in Shenzhen, China. The landslide flow process is reproduced by three-dimensional terrain analyses using LS-DYNA, considering three scenarios; namely, green field, movable buildings, and fixed buildings. Simulations show that the presence of densely located buildings significantly affects flow pattern, travel distance, deposition, and energy transfer mechanism. A fully developed debris fan in the flat area is observed in the green field case. The buildings in the runout path decelerate the flow process, leading to lower landslide mobility and less volume deposited in the accumulation zone. The shortest runout distance and widest and thickest deposits are observed in the fixed buildings case. The debris fan in the movable buildings case is closer to reality. Fixed buildings pose more constraint on surface moving material, leading to the largest deformation, largest internal energy, and smallest kinetic energy of the soil mass. The dissipation of the largest frictional energy occurs in the movable buildings case due to the long sliding distance of the damaged buildings. The internal energy of the landslide mass dominates the energy transfer mechanism. The results presented here indicate the need to consider building clusters when conducting urban landslide hazard mapping and risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call