Abstract
In the literature, it is reported that the protonated ketotifen mainly undergoes CC double bond cleavage in electrospray ionization tandem mass spectrometry (ESI-MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)-orbitrap). The mechanism of the generation of this product ion (m/z 96) through the CC double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two-step 1,2-hydride transfer and ion-neutral complex-mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI-MS/MS, and the fragmentation mechanism is suitable to explain other CC double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.