Abstract

It is very clear that the epididymis plays a crucial role in the maturation of spermatozoa, and without a fully developed and functional epididymis, male infertility will result. We are especially interested in understanding the mechanisms that regulate the development of this important organ because disruptions to epididymal function will also arise as a consequence of abnormal development. Very little is known either of the process of epididymal development or the nature and causes of congenital defects that lead to male infertility. A major event during Wolffian/epididymal duct embryonic development is elongation and coiling and this short review outlines potential mechanisms by which these events occur. It is hypothesized that elongation is the result of cell proliferation coupled with directed cell rearrangements, the later regulated by the planar cell polarity signaling pathway. Coiling proceeds in a proximal to distal manner, with three-dimensional coiling beginning approximately embryonic day 16.5 to 18.5 in the mouse. The exact mechanisms of coiling are not known but we hypothesize that it involves an interaction between the Wolffian duct epithelium and the surrounding mesenchyme cells, such that the extracellular matrix is remodeled to allow coiling and growth of the duct. Cell proliferation in the Wolffian duct appears to be dependent on the presence of androgens and mesenchymal factors during embryonic development, but lumicrine factors play an additional role during postnatal development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call